ADROID Conference Series: Engineering Sciences and Technology

(ACS: EST)

International Conference on Artificial Intelligence for Sustainable Development, Jaypee University Anoopshahr, India 2025

Volume 01, October 2025, pp. 13-20

DOI: https://doi.org/10.63503/c.acset.2025.2

ADOPTION OF EMERGING EDUCATIONAL TECHNOLOGIES IN URBAN PRIVATE SCHOOLS: A NETWORK-DRIVEN APPROACH TO FUTURE LEARNING

Haritika ^{1, a)}, Anita Beniwal ^{2, b)} and Poonam Beniwal ^{3, c)}

¹ Indira Gandhi National Open University (IGNOU), India
² Department of Education, Aditi Mahavidyalaya, University of Delhi, India
³ Maharaja Surajmal Institute, New Delhi, India

Abstract. This study explores how rapidly evolving educational technologies are influencing teaching and learning practices in urban private schools in India. Using two contrasting Delhi-based institutions—one operating with a fully digitized model and the other employing a blended approach—the research evaluates the integration of platforms such as Schoology, Embibe, Raz-Kids, ICT 360, and TeachNext. A mixed-methods design was applied, involving survey responses from 60 teachers and 80 students, along with interviews with two principals. Results indicate that technology-enhanced instruction improves student engagement, fosters self-directed learning, and increases teacher confidence in digital pedagogy. At the same time, the findings highlight persistent challenges, including infrastructure constraints, uneven training quality, and access disparities. The outcomes contribute practical recommendations for policymakers and school leaders aiming to implement inclusive, future-oriented digital learning environments.

Keywords: Educational technology; Digital learning; ICT 360; Schoology; Embibe; Raz-Kids; TeachNext; Private education; Blended learning

1. INTRODUCTION

Advances in digital technology are reshaping educational landscapes worldwide, with particularly notable effects in urban private schooling contexts. In India's metropolitan regions, many private institutions are integrating interactive platforms, artificial intelligence- based learning environments, and multimedia content delivery into their pedagogical models. This shift has been accelerated by the COVID-19 pandemic, which compelled schools to adopt online or hybrid modes almost overnight.

Motivation

While the potential of educational technology (EdTech) to enhance engagement and personalize learning has been widely acknowledged, its implementation varies considerably between schools. Disparities in digital infrastructure, teacher preparedness, and institutional vision can lead to uneven adoption and inconsistent educational outcomes. Understanding these dynamics is essential for designing strategies that maximize technology's benefits while minimizing exclusion.

Main Contributions

This paper:

a) Corresponding author 1: haritikasharma8@gmail.com (https://orcid.org/0009-0003-2714-8689)

b) Corresponding author 2: anitabeniwal@aditi.du.ac.in

c) Corresponding author 3: poonambeniwal@msi-ggsip.org (https://orcid.org/0009-0007-3236-0341)

- 1. Compares two private schools in Delhi with markedly different EdTech adoption models—a fully digitized environment and a blended learning approach.
- 2. Analyses quantitative and qualitative data from teachers, students, and administrators to evaluate impacts on engagement, performance, and instructional design.
- 3. Identifies systemic challenges and proposestargeted recommendations for sustainable, equitable technology integration.

Organization of the Paper

The remainder of this paper is structured as follows: Section 2 presents a review of relevant literature; Section 3 details the methodology, including the proposed framework and data sources; Section 4 reports the results and discussion, including a comparison with prior work; Section 5 concludes with limitations and directions for future research.

2. LITERATURE REVIEW

The integration of educational technology in formal learning environments has been extensively studied over the past two decades. Early work by Bates [1] emphasized the role of technology in facilitating flexible, learner-centered education, while Selwyn [2] examined the broader sociocultural and policy dimensions of technology adoption in schools. More recent studies, such as Ghavifekr and Rosdy [3], have demonstrated that digital tools can significantly enhance teaching effectiveness when coupled with adequate teacher training.

Artificial intelligence-powered platforms like Embibe have gained traction for their adaptive learning capabilities, enabling real-time personalization of instruction [4]. Similarly, tools like Schoology and Raz-Kids offer structured, curriculum-aligned digital environments that support both synchronous and asynchronous learning modes. However, Li and Ma's meta-analysis [5] cautions that technology alone does not guarantee improved outcomes; the surrounding infrastructure, pedagogical design, and user readiness are equally critical.

Despite these advancements, there remains limited empirical research comparing schools that have fully embraced digitization with those following a hybrid model, particularly in the Indian private school sector. This study addresses this gap by conducting a comparative analysis of two urban institutions with distinct technology adoption strategies.

3. METHODOLOGY

3.1 Research Design

A descriptive, mixed-method approach was employed to capture both statistical trends and nuanced stakeholder perspectives. Quantitative data were collected through structured surveys, while qualitative insights were obtained via semi-structured interviews. This combination provided a comprehensive understanding of how EdTech influences teaching and learning across different adoption models.

3.2 Study Context and Sample

The research was conducted in two private schools located in Delhi:

School A — operates a fully digitized instructional model.

School B — follows a blended approach, integrating digital tools selectively within traditional teaching frameworks.

Participants included:

- 2 Principals (one from each school)
- 60 Teachers (30 from each school)
- 80 Students (40 from each school, Grades IV to VIII)

A purposive sampling method ensured that all participants had direct experience with the selected digital platforms.

3.3 Data Collection Instruments

- Teacher Survey: Captured frequency of technology use, comfort levels, professional development participation, and perceived instructional benefits.
- Student Survey: Assessed user-friendliness, engagement levels, academic impact, and content preferences.
- Principal Interviews: Explored institutional strategies, implementation challenges, and future technology plans.
- **3.4 Ethical Considerations:** Prior permission was obtained from school authorities. Participants provided informed consent and were assured that responses would remain confidential and anonymous. No personally identifiable information was collected.

3.5 Data Analysis

Quantitative survey data were analyzed using descriptive statistics, expressed in percentages. Qualitative responses underwent thematic analysis to identify recurring patterns and insights that complemented the numerical findings.

Flowchart: The research process can be represented in the following steps:

Conceptual Framework of the Research Process

Problem	Define the research scope: EdTech adoption in urban private schools.
Selection of Study	Choose two Delhi-based institutions (fully digitized vs. blended).
Participant	Select 2 principals, 60 teachers, 80 students (Grades IV–VIII).
Instrument	Develop teacher & student surveys, principal interview guidelines.
Data	Conduct online surveys and in-person interviews
Data	Screen responses for completeness and accuracy.
Quantitative	Apply descriptive statistics
Qualitative	Perform thematic coding of interviews.
Integration of	Merge numerical and narrative results.
Interpretation and	Derive actionable strategies for EdTech integration.

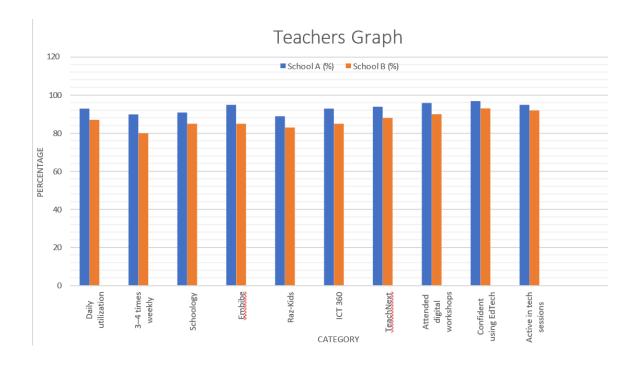
Algorithm: Sequence of Actions in Research Implementation

Input:

- Selection guidelines for schools
- Participant consent documentation
- Structured survey and interview instruments

Procedure:

- 1. Define clear objectives and study boundaries.
- 2. Select two contrasting schools in Delhi (fully digitized vs. blended learning model).
- 3. Obtain formal approval from each school's administration.
- 4. Prepare survey tools for teachers and students.
- 5. Draft interview protocols for principal discussions.
- 6. Distribute and collect survey responses from all targeted participants.
- 7. Conduct guided interviews with principals.
- 8. Compile, organize, and verify collected data.
- 9. Perform statistical analysis of quantitative responses.
- 10. Apply thematic analysis to qualitative interview material.
- 11. Integrate findings from both data types into a unified interpretation.
- 12. Develop targeted recommendations to guide future EdTech integration.


Output:

• Comparative analysis of educational technology adoption outcomes in two urban private schools

4. RESULTS AND DISCUSSION

Category	Indicator	School A (%)	School B (%)
Frequency of Use	Daily utilization	93	87
	3–4 times weekly	90	80
Preferred Platforms	Schoology	91	85
	Embibe	95	85
	Raz-Kids	89	83
	ICT 360	93	85
	TeachNext	94	88

Training & Confidence	Attended digital workshops	96	90
	Confident using EdTech	97	93
Student Engagement	Active in tech sessions	95	92

Interpretation: Teachers in School A reported higher frequency of EdTech use and greater confidence in applying these tools. This can be attributed to consistent training programs and peer-mentoring initiatives that reinforce digital competencies.

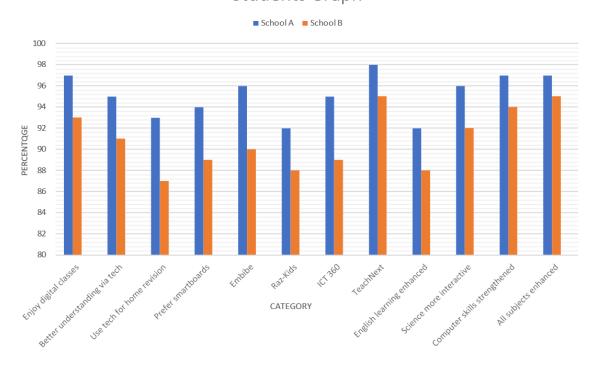

4.2 Student Survey Insights

Table 2. Student responses on engagement and tool preferences

Category	Measure	School A (%)	School B (%)
Engagement	Enjoy digital classes	97	93
	Better understanding via tech	95	91
	Use tech for home revision	93	87
	Prefer smartboards	94	89
Tool Preferences	Embibe	96	90

	Raz-Kids	92	88
	ICT 360	95	89
	TeachNext	98	95
Subject Benefits	English learning enhanced	92	88
	Science more interactive	96	92
	Computer skills strengthened	97	94
	All subjects enhanced	97	95

Students Graph

Interpretation: Both schools demonstrated strong student engagement; however, School A's learners showed higher levels of independence and digital fluency, likely resulting from broader and more frequent technology use

4.3 Principal Interview Highlights

Table 3. Summary of principal perspectives.

Focus Area	School A (Fully Digitized)	School B (Blended Approach)
Strategy	Comprehensive digital-first implementation	Traditional core with selective tech use

Platform Focus	AI-integrated tools like Embibe	Literacy-focused and video-based platforms
Training	Monthly sessions & peer mentoring	Bi-monthly tool-specific workshops
Student Impact	Promotes self-paced learning & revisions	Boosts in-class participation
Future Goals	Integration of AR/VR & analytics dashboards	Gradual tech integration under NEP

Interpretation: School A's leadership aims for innovative, full-scale digital transformation, whereas School B prefers a phased adoption strategy aligned with national policy guidelines.

4.4 Discussion

The findings support the argument that a robust digital infrastructure, combined with consistent teacher training, leads to higher engagement and learning gains. These results align with Ghavifekr and Rosdy's findings that effective integration requires both technological resources and teacher readiness. However, infrastructure gaps, particularly in internet reliability and device availability, continue to limit the full potential of EdTech in both contexts.

4.5 Comparison with Existing Literature

The findings of this study closely align with previous research demonstrating that educational technology can significantly enhance learner engagement and teaching effectiveness when implemented strategically. Ghavifekr and Rosdy (2015) reported that structured training for teachers and adequate institutional support are key factors in successful EdTech integration a conclusion mirrored in our results, where both schools benefited most when training was frequent and hands-on.

Similarly, Bates (2015) emphasized that technology should be harnessed to support flexible, learner-centered instruction. Both the fully digitized and blended models examined in our study reflect this principle, with teachers adapting digital tools to students' needs rather than applying them as one-size-fits-all solutions. However, Li and Ma's (2010) meta-analysis cautioned that technology adoption alone does not guarantee improved outcomes without supporting infrastructure. Our research reinforces this concern, as School B, with less robust connectivity and device access, achieved slower gains despite motivated staff and receptive students.

Selwyn (2016) raised the issue of digital inequality, warning that EdTech can widen gaps between learners if access is uneven. Interestingly, our findings show that even in a hybrid environment (School B), targeted interventions such as group-based smartboard sessions and selective platform use can narrow disparities and still deliver meaningful benefits.

The unique contribution of this study lies in its direct comparison of fully digitized and blended learning models within the same urban, private schooling context in India, an area underrepresented in the literature. While most prior studies focus on single-school case analyses or national-level surveys, our dual-site approach provides nuanced insights into how adoption depth influences outcomes, and how strategic planning can help less digitized schools achieve comparable gains.

5. CONCLUSION

This study demonstrates that private schools with comprehensive educational technology integration report higher levels of student engagement, improved academic outcomes, and greater teacher confidence in using digital tools. School A's fully digitized approach facilitated greater self-directed learning and adaptability, whereas School B's blended model still yielded positive outcomes but at a comparatively modest scale. The

evidence suggests that ongoing professional development, strategic platform selection, and robust infrastructure are critical enablers of successful EdTech adoption.

5.1 Limitations

- The study was conducted in just two urban schools, which restricts the extent to which its findings can be applied to other settings.
- Information was gathered through self-reported data, raising the possibility of response bias.
- The investigation assessed only short-term outcomes, leaving the long-term consequences unaddressed.

5.2 Future Scope

- · Expanding the sample to include rural and semi-urban schools could offer broader insights.
- Longitudinal studies could measure sustained impacts on learning outcomes.
- Future research could assess the integration of emerging technologies such as AR/VR and learning analytics to further personalize education.

CONFLICT OF INTEREST

The authors declare no conflicts of interest regarding the current research.

REFERENCES

- 1. Bates, A.W. *Teaching in a Digital Age: Guidelines for Designing Teaching and Learning*. 2015. Vancouver, Canada: Tony Bates Associates Ltd.
- 2. Ghavifekr, S., & Rosdy, W.A.W. Integration of ICT in teaching and learning: Effectiveness and challenges. International Journal of Research in Education and Science, 2015. 1(2): p.175–191. https://doi.org/10.21890/ijres.23596
- 3. Haritika. *Shaping the Future of Private Schools: The Role of Emerging Educational Technologies*. Degree, School of Education, Indira Gandhi National Open University, New Delhi, India. 2025.
- 4. Li, S., & Ma, Q. Evaluating the influence of technology on academic achievement: A meta-analysis. *Educational Technology & Society*, 2010. 13(2): p.180–193.
- 5. NITI Aayog. A Strategic Review of EdTech in India. 2021. New Delhi: Government of India.
- 6. Selwyn, N. Education and Technology: Key Issues and Debates. 2nd ed. 2016. London: Bloomsbury Academic.