METAHEURISTIC-ASSISTED HYBRID DEEP LEARNING FRAMEWORK FOR SKIN CANCER DETECTION, SEGMENTATION, CLASSIFICATION, AND SEVERITY PREDICTION

Authors

DOI:

https://doi.org/10.63503/c.acset.2025.18

Keywords:

Skin Disease Detection, Classification, Preprocessing, Dermoscopic Images, Deep Learning

Abstract

Skin cancer constitutes the most prevalent form of carcinoma, posing a significant threat to public health, with melanoma recognized for its particularly high mortality rate. The timely recognition of this pathology is crucial for the enactment of effective treatment modalities; nevertheless, traditional diagnostic techniques often face challenges due to deficiencies in image clarity and the complexities inherent in visual discrimination. This study introduces an advanced deep learning approaches designed to achieve superior segmentation and categorization of cutaneous neoplasms, with a distinct focus on the assessment of severity. Furthermore, the research includes a comprehensive analysis of the severity classifications of the identified cancers. Altogether, the potential of advanced deep learning methodologies to transform the landscape of skin cancer diagnostics is apparent, offering an integrative approach that enhances early detection, improves classification accuracy, and supports severity assessment, ultimately contributing to superior patient management and outcomes.

References

1. Moradi, N., & Mahdavi-Amiri, N. (2019). Kernel sparse representation based model for skin lesions segmentation and classification. Computer Methods and Programs in Biomedicine, 182, 105038. https://doi.org/10.1016/j.cmpb.2019.105038

2. Wahba, M. A., Ashour, A. S., & Abd Elnaby, M. M. (2018). A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification. Computer Methods and Programs in Biomedicine, 165, 163–174. https://doi.org/10.1016/j.cmpb.2018.08.017

3. Pereira, P. M. M., Fonseca-Pinto, R., & Faria, S. M. M. (2020). Skin lesion classification enhancement using border-line features – The melanoma vs nevus problem. Biomedical Signal Processing and Control, 57, 101765. https://doi.org/10.1016/j.bspc.2019.101765

4. Chatterjee, S., Dey, D., & Gorai, S. (2019). Extraction of features from cross correlation in space and frequency domains for classification of skin lesions. Biomedical Signal Processing and Control, 53, 101581. https://doi.org/10.1016/j.bspc.2019.101581

5. Mahbod, A., Schaefer, G., & Wang, C. (2019). Fusing fine-tuned deep features for skin lesion classification. Computerized Medical Imaging and Graphics, 71, 19–29. https://doi.org/10.1016/j.compmedimag.2018.11.002

6. Chatterjee, S., Dey, D., & Munshi, S. (2019). Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Computer Methods and Programs in Biomedicine, 178, 201–218. https://doi.org/10.1016/j.cmpb.2019.06.017

7. Serte, S., & Demirel, H. (2019). Gabor wavelet-based deep learning for skin lesion classification. Computers in Biology and Medicine, 113, 103423. https://doi.org/10.1016/j.compbiomed.2019.103423

8. Harangi, B. (2018). Skin lesion classification with ensembles of deep convolutional neural networks. Journal of Biomedical Informatics, 86, 25–32. https://doi.org/10.1016/j.jbi.2018.08.006

9. Rebouças Filho, P. P., Peixoto, S. A., & de Albuquerque, V. H. C. (2018). Automatic histologically-closer classification of skin lesions. Computerized Medical Imaging and Graphics, 68, 40–54. https://doi.org/10.1016/j.compmedimag.2018.06.001

10. Albahar, M. A. (2019). Skin lesion classification using convolutional neural network with novel regularizer. IEEE Access, 7, 38306–38313. https://doi.org/10.1109/ACCESS.2019.2906241

11. Riaz, F., Naeem, S., Nawaz, R., & Coimbra, M. (2019). Active contours based segmentation and lesion periphery analysis for characterization of skin lesions in dermoscopy images. IEEE Journal of Biomedical and Health Informatics, 23(2), 489–500. https://doi.org/10.1109/JBHI.2018.2832455

12. Kassem, M. A., Hosny, K. M., & Fouad, M. M. (2020). Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access, 8, 114822–114832. https://doi.org/10.1109/ACCESS.2020.3003890

13. Fan, X., et al. (2020). Effect of image noise on the classification of skin lesions using deep convolutional neural networks. Tsinghua Science and Technology, 25(3), 425–434. https://doi.org/10.26599/TST.2019.9010029

14. Melbin, K., & Raj, Y. J. V. (2020). Integration of modified ABCD features and support vector machine for skin lesion types classification. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-020-10056-8

15. Dhivyaa, C. R., Sangeetha, K., & Balamurugan, M. (2020). Skin lesion classification using decision trees and random forest algorithms. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02675-8

16. Sikkandar, Y. M., Alrasheadi, B. A., & Prakash, N. B. (2020). Deep learning based an automated skin lesion segmentation and intelligent classification model. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02537-3

17. Qin, Z., & Liu, Z. (2020). A GAN-based image synthesis method for skin lesion classification. Computer Methods and Programs in Biomedicine, 195, 105568. https://doi.org/10.1016/j.cmpb.2020.105568

18. Behara, K., Bhero, E., & Agee, J. T. (2024). An improved skin lesion classification using a hybrid approach with active contour snake model and lightweight attention-guided capsule networks. Diagnostics, 14(6), 636. https://doi.org/10.3390/diagnostics14060636

19. Adla, D., Reddy, G. V. R., Nayak, P., & Karuna, G. (2023). A full-resolution convolutional network with a dynamic graph cut algorithm for skin cancer classification and detection. Healthcare Analytics, 3, 100154. https://doi.org/10.1016/j.health.2023.100154

20. Dubey, V. K., & Kaushik, V. D. (2024). Epidermis lesion detection via optimized distributed capsule neural network. Computers in Biology and Medicine, 168, 107833. https://doi.org/10.1016/j.compbiomed.2024.107833

21. Santoso, K. P., Ginardi, R. V. H., Sastrowardoyo, R. A., & Madany, F. A. (2024). Leveraging spatial and semantic feature extraction for skin cancer diagnosis with capsule networks and graph neural networks. arXiv preprint arXiv:2403.12009.

22. Salih, O., & Duffy, K. J. (2023). Optimization convolutional neural network for automatic skin lesion diagnosis using a genetic algorithm. Applied Sciences, 13(5), 3248. https://doi.org/10.3390/app13053248

23. Sivasangeetha, A., Nallasivan, G., & Vargheese, M. (2023). Skin cancer diagnosis using improved capsules network. DRRJ Journal, 13(5).

24. Ali, R., Manikandan, A., & Xu, J. (2023). A novel framework of adaptive fuzzy-GLCM segmentation and fuzzy with capsules network (F-CapsNet) classification. Neural Computing and Applications, 35(30), 22133–22149. https://doi.org/10.1007/s00521-023-08274-8

25. Pal, A., Chaturvedi, A., Chandra, A., Chatterjee, R., Senapati, S., Frangi, A. F., & Garain, U. (2022). MICaps: Multi-instance capsule network for machine inspection of Munro's microabscess. Computers in Biology and Medicine, 140, 105071. https://doi.org/10.1016/j.compbiomed.2021.105071

26. Lan, Z., Cai, S., He, X., & Wen, X. (2022). FixCaps: An improved capsules network for diagnosis of skin cancer. IEEE Access, 10, 76261–76267. https://doi.org/10.1109/ACCESS.2022.3185023

27. Aggrey, E. S. E. B., Zhen, Q., Kodjiku, S. L., Asamoah, K. O., Barnes, O., Fiasam, L. D., Aidoo, E., & Aggrey, H. (2022). Detection of melanoma skin cancer using capsule network and multi-task learning framework. In 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (pp. 1–5). IEEE.

28. Tiwari, S. (2021). Dermatoscopy using multi-layer perceptron, convolution neural network, and capsule network to differentiate malignant melanoma from benign nevus. International Journal of Healthcare Information Systems and Informatics, 16(3), 58–73.

29. Khan, G. Z., & Ullah, I. (2023). Efficient technique for monkeypox skin disease classification with clinical data using pre-trained models. Journal of Innovative Image Processing, 5(2), 192–213.

30. Singh, J., Sandhu, J. K., & Kumar, Y. (2024). An analysis of detection and diagnosis of different classes of skin diseases using artificial intelligence-based learning approaches with hyper parameters. Archives of Computational Methods in Engineering, 31(2), 1051–1078. https://doi.org/10.1007/s11831-023-10000-7

31. Sany, N. H., & Shill, P. C. (2024). Image segmentation-based approach for skin disease detection and classification using machine learning algorithms. In 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1–5). IEEE.

32. Mittal, R., Jeribi, F., Martin, R. J., Malik, V., Menachery, S. J., & Singh, J. (2024). DermCDSM: Clinical decision support model for dermatosis using systematic approaches of machine learning and deep learning. IEEE Access.

33. Inthiyaz, S., Altahan, B. R., Ahammad, S. H., Rajesh, V., Kalangi, R. R., Smirani, L. K., Hossain, M. A., & Rashed, A. N. Z. (2023). Skin disease detection using deep learning. Advances in Engineering Software, 175, 103361. https://doi.org/10.1016/j.advengsoft.2023.103361

34. Vayadande, K., Lohade, O., Umbare, S., Pise, P., Matre, A., Mule, M., Mahajan, I., et al. (2024). Automated multiclass skin disease diagnosis using deep learning. International Journal of Intelligent Systems and Applications in Engineering, 12(11s), 327–336.

35. Hamida, S., Lamrani, D., El Gannour, O., Saleh, S., & Cherradi, B. (2024). Toward enhanced skin disease classification using a hybrid RF-DNN system leveraging data balancing and augmentation techniques. Bulletin of Electrical Engineering and Informatics, 13(1), 538–547.

36. Maduranga, M. W. P., & Nandasena, D. (2022). Mobile-based skin disease diagnosis system using convolutional neural networks (CNN). IJ Image Graphics Signal Process, 3, 47–57.

37. Anand, V., Gupta, S., Koundal, D., Nayak, S. R., Nayak, J., & Vimal, S. (2022). Multi-class skin disease classification using transfer learning model. International Journal on Artificial Intelligence Tools, 31(02), 2250029.

38. Shanthi, T., Sabeenian, R. S., & Anand, R. (2020). Automatic diagnosis of skin diseases using convolution neural network. Microprocessors and Microsystems, 76, 103074. https://doi.org/10.1016/j.micpro.2020.103074

39. Cai, G., Zhu, Y., Wu, Y., Jiang, X., Ye, J., & Yang, D. (2023). A multimodal transformer to fuse images and metadata for skin disease classification. The Visual Computer, 39(7), 2781–2793. https://doi.org/10.1007/s00371-023-02826-9

40. Yanagisawa, Y., Shido, K., Kojima, K., & Yamasaki, K. (2023). Convolutional neural network-based skin image segmentation model to improve classification of skin diseases in conventional and non-standardized picture images. Journal of Dermatological Science, 109(1), 30–36. https://doi.org/10.1016/j.jdermsci.2022.10.009

41. Wei, M., Wu, Q., Ji, H., Wang, J., Lyu, T., Liu, J., & Zhao, L. (2023). A skin disease classification model based on DenseNet and ConvNeXt fusion. Electronics, 12(2), 438. https://doi.org/10.3390/electronics12020438

42. Ayas, S. (2023). Multiclass skin lesion classification in dermoscopic images using Swin Transformer model. Neural Computing and Applications, 35(9), 6713–6722. https://doi.org/10.1007/s00521-023-07927-y

43. Hameed, A., Umer, M., Hafeez, U., Mustafa, H., Sohaib, A., Siddique, M. A., & Madni, H. A. (2023). Skin lesion classification in dermoscopic images using stacked convolutional neural network. Journal of Ambient Intelligence and Humanized Computing, 14(4), 3551–3565.

44. Narayan, V., Awasthi, S., Fatima, N., Faiz, M., Bordoloi, D., Sandhu, R., & Srivastava, S. (2023). Severity of lumpy disease detection based on deep learning technique. In 2023 International Conference on Disruptive Technologies (ICDT) (pp. 507–512). IEEE.

45. Muhaba, K. A., Dese, K., Aga, T. M., Zewdu, F. T., & Simegn, G. L. (2022). Automatic skin disease diagnosis using deep learning from clinical image and patient information. Skin Health and Disease, 2(1), e81. https://doi.org/10.1002/ski2.81

46. Gautam, V., Trivedi, N. K., Anand, A., Tiwari, R., Zaguia, A., Koundal, D., & Jain, S. (2023). Early skin disease identification using deep neural network. Computer Systems Science & Engineering, 44(3), 2259–2275.

47. Rao, G. M., Ramesh, D., Gantela, P., & Srinivas, K. (2023). A hybrid deep learning strategy for image-based automated prognosis of skin disease. Soft Computing. https://doi.org/10.1007/s00500-023-09012-3

48. Zareen, S. S., Sun, G., Kundi, M., Qadri, S. F., & Qadri, S. (2024). Enhancing skin cancer diagnosis with deep learning: A hybrid CNN-RNN approach. Computers, Materials & Continua, 79(1). https://doi.org/10.32604/cmc.2024.047418

49. Tabrizchi, H., Parvizpour, S., & Razmara, J. (2023). An improved VGG model for skin cancer detection. Neural Processing Letters, 55(4), 3715–3732. https://doi.org/10.1007/s11063-022-10927-1

50. Venugopal, V., Raj, N. I., Nath, M. K., & Stephen, N. (2023). A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images. Decision Analytics Journal, 8, 100278. https://doi.org/10.1016/j.dajour.2023.100278

51. Pacal, I., Ozdemir, B., Zeynalov, J., Gasimov, H., & Pacal, N. (2025). A novel CNN-ViT-based deep learning model for early skin cancer diagnosis. Biomedical Signal Processing and Control, 104, 107627. https://doi.org/10.1016/j.bspc.2025.107627

52. Pacal, I., Alaftekin, M., & Zengul, F. D. (2024). Enhancing skin cancer diagnosis using Swin Transformer with hybrid shifted window-based multi-head self-attention and SwiGLU-based MLP. Journal of Imaging Informatics in Medicine, 37, 3174–3192. https://doi.org/10.1007/s10278-024-01140-8

53. Patil, P. R., & Tandon, R. (2025). An accurate multiclass skin lesions classification of benign and malignant using deep learning and dermoscopic analysis. Journal of Innovative Image Processing, 7(3), 951–975. https://doi.org/10.36548/jiip.2025.3.019

54. https://www.kaggle.com/datasets/surajghuwalewala/ham1000-segmentation-and-classification

Downloads

Published

2025-11-24

How to Cite

Punam R. Patil, Ritu Tandon, Rajesh Kumar Nagar, & Bhushan V. Patil. (2025). METAHEURISTIC-ASSISTED HYBRID DEEP LEARNING FRAMEWORK FOR SKIN CANCER DETECTION, SEGMENTATION, CLASSIFICATION, AND SEVERITY PREDICTION. Adroid Conference Series: Engineering and Technology, 1, 173-181. https://doi.org/10.63503/c.acset.2025.18